YES 1.727 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/FiniteMap.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule FiniteMap
  ((fmToList_LE :: FiniteMap Char a  ->  Char  ->  [(Char,a)]) :: FiniteMap Char a  ->  Char  ->  [(Char,a)])

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  fmToList_LE :: Ord b => FiniteMap b a  ->  b  ->  [(b,a)]
fmToList_LE fm fr foldFM_LE (\key elt rest ->(key,elt: rest) [] fr fm

  foldFM_LE :: Ord c => (c  ->  a  ->  b  ->  b ->  b  ->  c  ->  FiniteMap c a  ->  b
foldFM_LE k z fr EmptyFM z
foldFM_LE k z fr (Branch key elt _ fm_l fm_r
 | key <= fr = 
foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise = 
foldFM_LE k z fr fm_l


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\keyeltrest→(key,elt: rest

is transformed to
fmToList_LE0 key elt rest = (key,elt: rest



↳ HASKELL
  ↳ LR
HASKELL
      ↳ BR

mainModule FiniteMap
  ((fmToList_LE :: FiniteMap Char a  ->  Char  ->  [(Char,a)]) :: FiniteMap Char a  ->  Char  ->  [(Char,a)])

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  fmToList_LE :: Ord a => FiniteMap a b  ->  a  ->  [(a,b)]
fmToList_LE fm fr foldFM_LE fmToList_LE0 [] fr fm

  
fmToList_LE0 key elt rest (key,elt: rest

  foldFM_LE :: Ord c => (c  ->  b  ->  a  ->  a ->  a  ->  c  ->  FiniteMap c b  ->  a
foldFM_LE k z fr EmptyFM z
foldFM_LE k z fr (Branch key elt _ fm_l fm_r
 | key <= fr = 
foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise = 
foldFM_LE k z fr fm_l


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule FiniteMap
  ((fmToList_LE :: FiniteMap Char a  ->  Char  ->  [(Char,a)]) :: FiniteMap Char a  ->  Char  ->  [(Char,a)])

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap b a = EmptyFM  | Branch b a Int (FiniteMap b a) (FiniteMap b a


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  fmToList_LE :: Ord a => FiniteMap a b  ->  a  ->  [(a,b)]
fmToList_LE fm fr foldFM_LE fmToList_LE0 [] fr fm

  
fmToList_LE0 key elt rest (key,elt: rest

  foldFM_LE :: Ord c => (c  ->  a  ->  b  ->  b ->  b  ->  c  ->  FiniteMap c a  ->  b
foldFM_LE k z fr EmptyFM z
foldFM_LE k z fr (Branch key elt vw fm_l fm_r
 | key <= fr = 
foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise = 
foldFM_LE k z fr fm_l


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Cond Reductions:
The following Function with conditions
foldFM_LE k z fr EmptyFM = z
foldFM_LE k z fr (Branch key elt vw fm_l fm_r)
 | key <= fr
 = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise
 = foldFM_LE k z fr fm_l

is transformed to
foldFM_LE k z fr EmptyFM = foldFM_LE3 k z fr EmptyFM
foldFM_LE k z fr (Branch key elt vw fm_l fm_r) = foldFM_LE2 k z fr (Branch key elt vw fm_l fm_r)

foldFM_LE0 k z fr key elt vw fm_l fm_r True = foldFM_LE k z fr fm_l

foldFM_LE1 k z fr key elt vw fm_l fm_r True = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
foldFM_LE1 k z fr key elt vw fm_l fm_r False = foldFM_LE0 k z fr key elt vw fm_l fm_r otherwise

foldFM_LE2 k z fr (Branch key elt vw fm_l fm_r) = foldFM_LE1 k z fr key elt vw fm_l fm_r (key <= fr)

foldFM_LE3 k z fr EmptyFM = z
foldFM_LE3 wv ww wx wy = foldFM_LE2 wv ww wx wy

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule FiniteMap
  (fmToList_LE :: FiniteMap Char a  ->  Char  ->  [(Char,a)])

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  fmToList_LE :: Ord b => FiniteMap b a  ->  b  ->  [(b,a)]
fmToList_LE fm fr foldFM_LE fmToList_LE0 [] fr fm

  
fmToList_LE0 key elt rest (key,elt: rest

  foldFM_LE :: Ord b => (b  ->  c  ->  a  ->  a ->  a  ->  b  ->  FiniteMap b c  ->  a
foldFM_LE k z fr EmptyFM foldFM_LE3 k z fr EmptyFM
foldFM_LE k z fr (Branch key elt vw fm_l fm_rfoldFM_LE2 k z fr (Branch key elt vw fm_l fm_r)

  
foldFM_LE0 k z fr key elt vw fm_l fm_r True foldFM_LE k z fr fm_l

  
foldFM_LE1 k z fr key elt vw fm_l fm_r True foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
foldFM_LE1 k z fr key elt vw fm_l fm_r False foldFM_LE0 k z fr key elt vw fm_l fm_r otherwise

  
foldFM_LE2 k z fr (Branch key elt vw fm_l fm_rfoldFM_LE1 k z fr key elt vw fm_l fm_r (key <= fr)

  
foldFM_LE3 k z fr EmptyFM z
foldFM_LE3 wv ww wx wy foldFM_LE2 wv ww wx wy


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldFM_LE(wz10, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), h) → new_foldFM_LE1(wz10, wz3430, wz3431, wz3432, wz3433, wz3434, h)
new_foldFM_LE1(wz10, Char(Zero), wz341, wz342, wz343, wz344, h) → new_foldFM_LE0(wz341, new_foldFM_LE2(wz10, wz343, h), wz344, h)
new_foldFM_LE1(wz10, Char(Succ(wz34000)), wz341, wz342, wz343, wz344, h) → new_foldFM_LE(wz10, wz343, h)
new_foldFM_LE1(wz10, Char(Zero), wz341, wz342, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), wz344, h) → new_foldFM_LE1(wz10, wz3430, wz3431, wz3432, wz3433, wz3434, h)
new_foldFM_LE0(wz31, wz6, Branch(wz340, wz341, wz342, wz343, wz344), h) → new_foldFM_LE1(new_fmToList_LE0(wz31, wz6, h), wz340, wz341, wz342, wz343, wz344, h)

The TRS R consists of the following rules:

new_foldFM_LE10(wz10, Char(Zero), wz341, wz342, wz343, wz344, h) → new_foldFM_LE3(wz341, new_foldFM_LE2(wz10, wz343, h), wz344, h)
new_fmToList_LE0(wz31, wz5, h) → :(@2(Char(Zero), wz31), wz5)
new_foldFM_LE2(wz10, EmptyFM, h) → wz10
new_foldFM_LE3(wz31, wz6, Branch(wz340, wz341, wz342, wz343, wz344), h) → new_foldFM_LE10(new_fmToList_LE0(wz31, wz6, h), wz340, wz341, wz342, wz343, wz344, h)
new_foldFM_LE3(wz31, wz6, EmptyFM, h) → new_fmToList_LE0(wz31, wz6, h)
new_foldFM_LE2(wz10, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), h) → new_foldFM_LE10(wz10, wz3430, wz3431, wz3432, wz3433, wz3434, h)
new_foldFM_LE10(wz10, Char(Succ(wz34000)), wz341, wz342, wz343, wz344, h) → new_foldFM_LE2(wz10, wz343, h)

The set Q consists of the following terms:

new_foldFM_LE10(x0, Char(Zero), x1, x2, x3, x4, x5)
new_foldFM_LE3(x0, x1, EmptyFM, x2)
new_foldFM_LE2(x0, EmptyFM, x1)
new_fmToList_LE0(x0, x1, x2)
new_foldFM_LE3(x0, x1, Branch(x2, x3, x4, x5, x6), x7)
new_foldFM_LE2(x0, Branch(x1, x2, x3, x4, x5), x6)
new_foldFM_LE10(x0, Char(Succ(x1)), x2, x3, x4, x5, x6)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldFM_LE11(wz82, wz83, wz84, wz85, wz86, wz87, wz88, Zero, Zero, h) → new_foldFM_LE12(wz82, wz83, wz84, wz85, wz86, wz87, wz88, h)
new_foldFM_LE12(wz82, wz83, wz84, wz85, wz86, wz87, wz88, h) → new_foldFM_LE4(wz82, wz83, wz87, h)
new_foldFM_LE13(wz9, wz400, Char(Succ(wz34000)), wz341, wz342, wz343, wz344, ba) → new_foldFM_LE11(wz9, wz400, wz34000, wz341, wz342, wz343, wz344, wz34000, wz400, ba)
new_foldFM_LE11(wz82, wz83, wz84, wz85, wz86, wz87, wz88, Succ(wz890), Succ(wz900), h) → new_foldFM_LE11(wz82, wz83, wz84, wz85, wz86, wz87, wz88, wz890, wz900, h)
new_foldFM_LE11(wz82, wz83, wz84, wz85, wz86, wz87, wz88, Succ(wz890), Zero, h) → new_foldFM_LE4(wz82, wz83, wz87, h)
new_foldFM_LE11(wz82, wz83, wz84, wz85, wz86, wz87, wz88, Zero, Succ(wz900), h) → new_foldFM_LE4(wz82, wz83, wz87, h)
new_foldFM_LE11(wz82, wz83, wz84, wz85, wz86, wz87, wz88, Zero, Succ(wz900), h) → new_foldFM_LE4(new_fmToList_LE00(wz84, wz85, new_foldFM_LE5(wz82, wz83, wz87, h), h), wz83, wz88, h)
new_foldFM_LE4(wz9, wz400, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), ba) → new_foldFM_LE13(wz9, wz400, wz3430, wz3431, wz3432, wz3433, wz3434, ba)
new_foldFM_LE13(wz9, wz400, Char(Zero), wz341, wz342, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), wz344, ba) → new_foldFM_LE13(wz9, wz400, wz3430, wz3431, wz3432, wz3433, wz3434, ba)
new_foldFM_LE13(wz9, wz400, Char(Zero), wz341, wz342, wz343, wz344, ba) → new_foldFM_LE6(wz341, new_foldFM_LE5(wz9, wz400, wz343, ba), wz400, wz344, ba)
new_foldFM_LE12(wz82, wz83, wz84, wz85, wz86, wz87, wz88, h) → new_foldFM_LE4(new_fmToList_LE00(wz84, wz85, new_foldFM_LE5(wz82, wz83, wz87, h), h), wz83, wz88, h)
new_foldFM_LE6(wz31, wz5, wz400, Branch(wz340, wz341, wz342, wz343, wz344), ba) → new_foldFM_LE13(new_fmToList_LE0(wz31, wz5, ba), wz400, wz340, wz341, wz342, wz343, wz344, ba)

The TRS R consists of the following rules:

new_foldFM_LE14(wz9, wz400, Char(Succ(wz34000)), wz341, wz342, wz343, wz344, ba) → new_foldFM_LE16(wz9, wz400, wz34000, wz341, wz342, wz343, wz344, wz34000, wz400, ba)
new_foldFM_LE7(wz31, wz5, wz400, EmptyFM, ba) → new_fmToList_LE0(wz31, wz5, ba)
new_foldFM_LE15(wz82, wz83, wz84, wz85, wz86, wz87, wz88, h) → new_foldFM_LE5(new_fmToList_LE00(wz84, wz85, new_foldFM_LE5(wz82, wz83, wz87, h), h), wz83, wz88, h)
new_foldFM_LE5(wz9, wz400, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), ba) → new_foldFM_LE14(wz9, wz400, wz3430, wz3431, wz3432, wz3433, wz3434, ba)
new_foldFM_LE16(wz82, wz83, wz84, wz85, wz86, wz87, wz88, Succ(wz890), Succ(wz900), h) → new_foldFM_LE16(wz82, wz83, wz84, wz85, wz86, wz87, wz88, wz890, wz900, h)
new_foldFM_LE16(wz82, wz83, wz84, wz85, wz86, wz87, wz88, Zero, Zero, h) → new_foldFM_LE15(wz82, wz83, wz84, wz85, wz86, wz87, wz88, h)
new_foldFM_LE16(wz82, wz83, wz84, wz85, wz86, wz87, wz88, Succ(wz890), Zero, h) → new_foldFM_LE5(wz82, wz83, wz87, h)
new_fmToList_LE00(wz84, wz85, wz91, h) → :(@2(Char(Succ(wz84)), wz85), wz91)
new_foldFM_LE7(wz31, wz5, wz400, Branch(wz340, wz341, wz342, wz343, wz344), ba) → new_foldFM_LE14(new_fmToList_LE0(wz31, wz5, ba), wz400, wz340, wz341, wz342, wz343, wz344, ba)
new_foldFM_LE16(wz82, wz83, wz84, wz85, wz86, wz87, wz88, Zero, Succ(wz900), h) → new_foldFM_LE15(wz82, wz83, wz84, wz85, wz86, wz87, wz88, h)
new_fmToList_LE0(wz31, wz5, ba) → :(@2(Char(Zero), wz31), wz5)
new_foldFM_LE14(wz9, wz400, Char(Zero), wz341, wz342, wz343, wz344, ba) → new_foldFM_LE7(wz341, new_foldFM_LE5(wz9, wz400, wz343, ba), wz400, wz344, ba)
new_foldFM_LE5(wz9, wz400, EmptyFM, ba) → wz9

The set Q consists of the following terms:

new_foldFM_LE7(x0, x1, x2, EmptyFM, x3)
new_foldFM_LE14(x0, x1, Char(Zero), x2, x3, x4, x5, x6)
new_foldFM_LE7(x0, x1, x2, Branch(x3, x4, x5, x6, x7), x8)
new_fmToList_LE0(x0, x1, x2)
new_foldFM_LE16(x0, x1, x2, x3, x4, x5, x6, Succ(x7), Zero, x8)
new_foldFM_LE16(x0, x1, x2, x3, x4, x5, x6, Zero, Zero, x7)
new_foldFM_LE16(x0, x1, x2, x3, x4, x5, x6, Zero, Succ(x7), x8)
new_foldFM_LE14(x0, x1, Char(Succ(x2)), x3, x4, x5, x6, x7)
new_foldFM_LE15(x0, x1, x2, x3, x4, x5, x6, x7)
new_foldFM_LE5(x0, x1, Branch(x2, x3, x4, x5, x6), x7)
new_foldFM_LE5(x0, x1, EmptyFM, x2)
new_foldFM_LE16(x0, x1, x2, x3, x4, x5, x6, Succ(x7), Succ(x8), x9)
new_fmToList_LE00(x0, x1, x2, x3)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_foldFM_LE8(Char(Zero), Branch(Char(Succ(wz3000)), wz31, wz32, wz33, wz34), h) → new_foldFM_LE8(Char(Zero), wz33, h)
new_foldFM_LE8(Char(Zero), Branch(Char(Zero), wz31, wz32, wz33, wz34), h) → new_foldFM_LE8(Char(Zero), wz33, h)
new_foldFM_LE8(Char(Succ(wz400)), Branch(Char(Zero), wz31, wz32, wz33, wz34), h) → new_foldFM_LE8(Char(Succ(wz400)), wz33, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
QDP
                          ↳ QDPSizeChangeProof
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldFM_LE8(Char(Succ(wz400)), Branch(Char(Zero), wz31, wz32, wz33, wz34), h) → new_foldFM_LE8(Char(Succ(wz400)), wz33, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
QDP
                          ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_foldFM_LE8(Char(Zero), Branch(Char(Succ(wz3000)), wz31, wz32, wz33, wz34), h) → new_foldFM_LE8(Char(Zero), wz33, h)
new_foldFM_LE8(Char(Zero), Branch(Char(Zero), wz31, wz32, wz33, wz34), h) → new_foldFM_LE8(Char(Zero), wz33, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: